EUROPE

S

UNIVER

BRUXELLES

E C

TÉ LIBRE

ERS

U N I V

Study of the thermal conductivity of fine-grained soils

Effect of density, water content and microstructure

Master Thesis presented by Nicolas Rasson

Promoter: B. François

07/11/2013

ROPE

П

Introduction

The knowledge of the thermal conductivity of soils required in various applications:

- Nuclear waste disposals
- Buried cables and pipelines
- Geothermal applications

ULB Objectives

ш

• Initial objective:

- Measure thermal conductivity of a fine-grained soil and assess structural aspects in compacted state
- Discuss the applicability of the measurement method on soils in laboratory conditions
- Compare the obtained results with existing models for soil thermal conductivity prediction

ULB | Plan

1. Theoretical aspects

- A. Thermal transfer in soil materials
- B. Thermal conductivity models for soils
- 2. Measuring soil thermal conductivity
 - A. Thermal conductivity measurement methods
 - B. Experimental set-up
 - C. Calibration
 - D. Studied soils & Scope of tests
- 3. Results and discussion
 - A. Results
 - B. Error analysis
- 4. Conclusion

ULB Thermal transfer: Fourier's Law

In conventional materials λ is $\underline{\text{constant}}$ for a given material at a given temperature

In soils λ may vary with a change of the soil state (amount of water, degree of compaction, structure,...)

ULB Thermal transfer in soils

- Soil is a 3-phase material:
 - → λ_{soil} depends on the conductivity of each phase and on their proportions

 $\lambda_{solid} \approx 10 \; \lambda_{water} \approx 200 \; \lambda_{air}$

- 3 main factors have an influence on $\boldsymbol{\lambda}$ in soils:
 - 1. Proportion of voids and their spatial distribution (n or γ_d)
 - 2. Proportion of water that fills the voids (S_r or w)
 - 3. Mineral composition of the solid phase

mica \rightarrow 2-3 W/mK quartz \rightarrow 7-8 W/mK

ш

 $\frac{\lambda_s}{\lambda_f}$

ULB Influence of the structure (2/2)

In practice:

- In dry soils λ_s / λ_f is important (>100)
 - very high sensitivity to the particle spatial distribution
- In saturated soils λ_s / λ_f is moderate (<13)
 - The thermal conductivity can be approximated by the geometric mean equation:

ш

ULB Models for soil thermal conductivity

2 well-known models for thermal conductivity prediction:

ULB Thermal conductivity measurement

ROPE

ш

0

LL

ERS

N I V

S

ELLE

ULB | Experimental set-up

- Thermal probe
 - Length: 15 cm
 - heating wire resistance $R_h [\Omega/m]$
 - thermocouple junction
 - Specified accuracy: ± (3% + 0,02) W/mK (homogeneous material and good contact)
- Constant current source

 $I \rightarrow q = R_h I^2$

- Precision multimetre to record output signal [mV]
- Shunt resistance R_c to measure input current accurately at the end of the test

ULB

ROPE

U E

D U

ERS

UNIV

S

LLE

Calibration (1/2)

- The probe was calibrated on agar gel <u>reference material</u>:
 - $\lambda_{tabulated} = 0.61 \text{ W/mK}$
- Check influence of
 - <u>Measurement time</u>
 - 1. First non-linear transient part
 - 2. Then linear portion $\rightarrow \lambda$
 - 3. Border effects

Transient time over after 25 seconds

– <u>Sample size</u>

 ΔT_p A+B In t A+B In t Long t Long t Long t Long t

 $\lambda_{measured} = 0.57 - 0.65$ W/mK

No border effects were observed for measurements as long as 10 minutes

Input power

Should large enough to generate measurable temperature increases Limited to 6 W/m (0.3 A)

Appropriate: 4 W/m K

Calibration (2/2)

- Develop a systematic method to detect the linear part in the ln(t) T graph
 - → Based on method used at ULg
 - 1. Plot <u>*ln(t) T*</u> graph
 - Compute first derivative <u>s</u> based on several measurement points by least square method
 - 3. Compute second derivative s'
 - ➔ The most linear part corresponds to the peak value in <u>1/s'</u>

If several peaks, observe <u>s</u> to check coherence

ULB

ULB

ш

Studied soils & Scope of tests

ULB Results: silt (1/2)

- Difficult to reach desired density
- Wetting of samples $4 \rightarrow 5$
 - Vertical moisture gradient due to low permeability
 - ➔ Solution: wet sample from top & bottom side
- Hard to insert probe in compacted silt, even with pre-hole

EUROPE

0

ULB Results: silt (2/2)

- Values fit with Johansen's model:
 ± 10 % difference (except point 2)
- Results are globally coherent
 Clear influence of w
- But large dispersion: ± 10 %
 → Higher dispersion than for the reference material

OPE

EUR

É

F

S

2

ш

>

z

ES

Ľ

ш

RUX

m

ш

ш

2

8

_

Ψ

-

_

ERS

>

z

Results: sand

- Agreement with model
 - Good agreement for dry state
 - Over-prediction of saturated state
 - Incoherence of intermediate values and <u>under-prediction</u> with respect to the model
- Significant dispersion on the thermal conductivity: ± 15 %
- Significant vertical moisture gradient in both dense and loose state due to gravity

ULB

ш

ULB Error analysis (1/2)

- Errors due to measurement method
 - Probe-to-sample <u>contact resistance</u>
 - May lead to an excessive transient time
 - → Values improved by spreading high thermal conductivity grease on the needle
 - Under-prediction caused by bended needle and soil cohesion
 - Errors due to a variation of <u>input</u> <u>current</u>

ш

ULB Error analysis (2/2)

- Errors due to sample heterogeneities
 - → Mainly caused by vertical moisture gradient
 - Uncertainty about the moisture content value associated to the measurement
 - Effect of vertical thermal conductivity gradient on measured values unclear

ULB Improvements & Recommendations

- Apply thermal grease on probe in soils that present cohesion
- Sample dimensions as small as possible
- Determine moisture content at least at 3 levels in the sample
- Use constant current source
 - If possible monitor value during measurement to check stability (3 digits)

Conclusion

ULB

- Better understanding of parameters that influence soil thermal conductivity
- In soils \rightarrow decreased accuracy
- Large samples required

Thermal probe not ideal for precise laboratory study involving structural aspects

- Appropriate for in-situ and undisturbed soil sample measurements
- Models are useful and precise, provided good knowledge of soils characteristics (S_r, n, quartz content)