

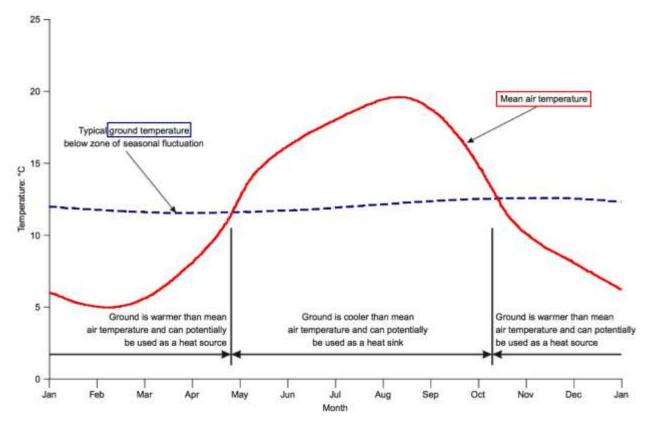
Shallow Geothermal Energy: Mapping of the potential of a specific area in Brussels

Master thesis submitted under the supervision of Prof. dr. ir. Bertrand FRANCOIS
In order to be awarded the Master's Degree in Civil Engineering, option constructions and geomaterials

Table of contents

- Introduction
- Choice of a specific area
- Analysis of the chosen area
- □ Conclusion

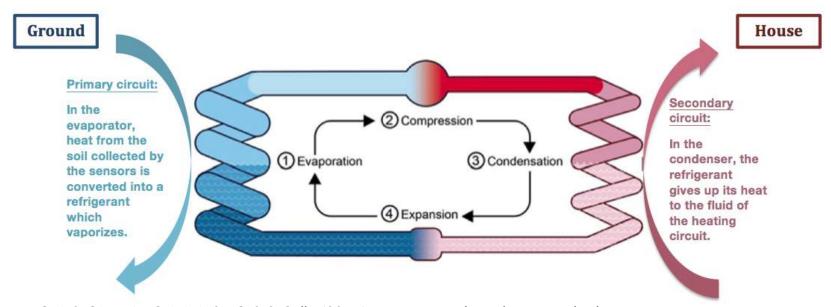
I. Introduction


- □ Heating & cooling: CO₂
 - → Brussels: PEB
- Study low carbon emission technologies
- Use ground

- Aim of the work:
 - Describe constraints of GSHP project
 - Estimate geothermal potential of a specific area

II. Geothermal energy

- Shallow geothermal energy (0 to 200 m)
- □ Ground = thermally stable mass



PREENE, M., & W. Powrie. (2009). Ground energy systems: from analysis to geotechnical design. Géothec- nique, 59(3), pp. 261-271

II. Geothermal energy1. GSHP system

- Heat to or from the ground:
 - Primary circuit
 - Secondary circuit
 - Heat Pump $COP = \frac{Q_{out}}{P_{ol}}$;

II. Geothermal energy2. Borehole Heat Exchanger

Open-loop

- Groundwater extraction
- □ Good water-bearing
- High permeability
- Less authorizations

Closed-loop

- Fluid through absorber pipes
- □ Usable for each soil
- □ <u>Vertical</u>:
 - □ Depth: 50 150 m
 - 5-10m from each other
- □ Horizontal:
 - Depth: 1.5 2 m
 - \blacksquare \pm 2 X S_{heated}

Choice of a specific area

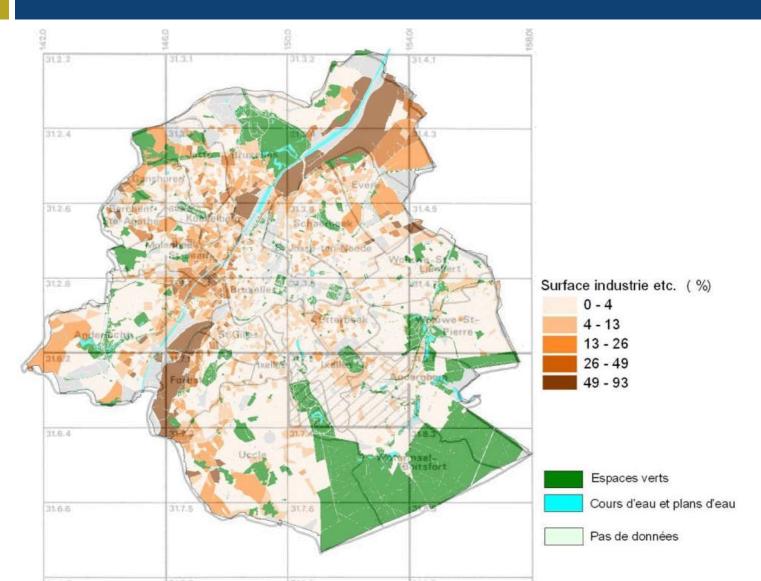
Are there areas in Brussels more suitable to accommodate a GSHP system?

III. Choice of a specific area1. Aim of this choice

- □ <u>Important</u>: method
- Purpose of the choice:
 - Not too much constraints
 - Achieve the goal

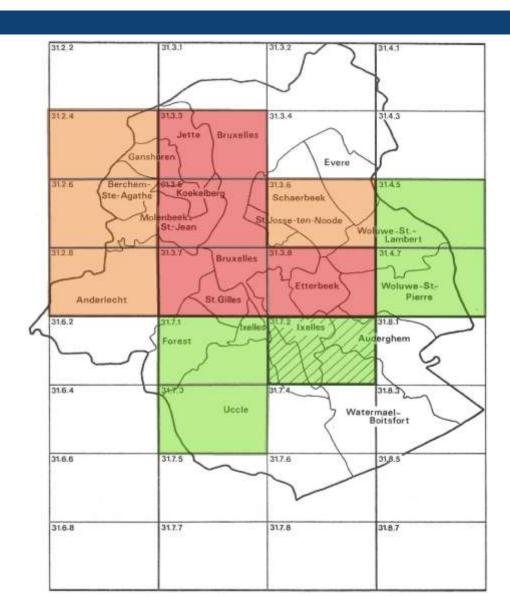
III. Choice of a specific area2. Method

- Geotechnical maps
- Constraints:
 - Space
 - Accessibility
 - Building needs
 - VITO

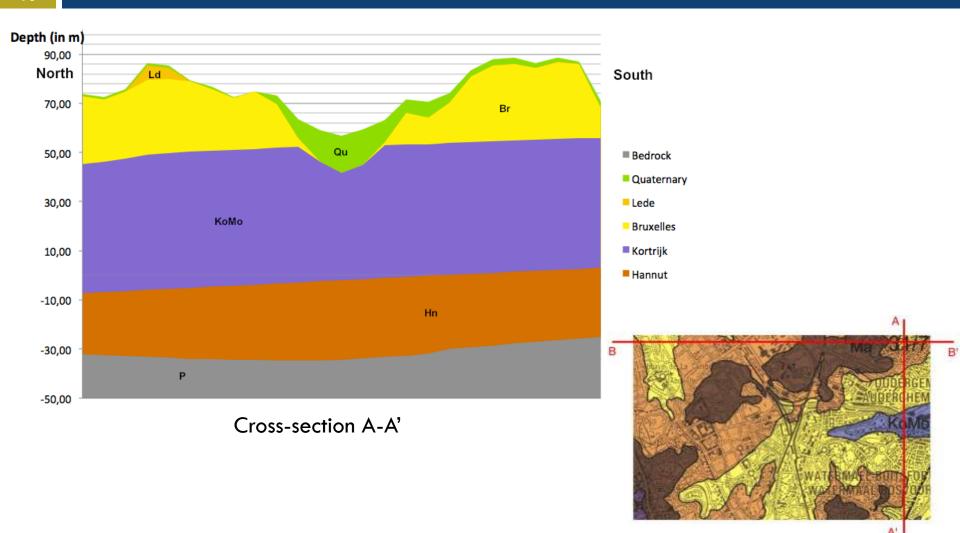

	Favorable for geothermy	Houses with 3 or 4 fronts	Varied types of buildings	Low portion of old buildings	Varied population density	Portion of built-up area	City blocks	Average
31.2.2	/	/	/	/	1	/	/	/
31.2.4	+-	+ -	+-	++	+-	+	+	+/-
31.2.6	+-	+ =	+-	++	+	+ -	+	+/-
31.2.8	(8/8	++	+-	+	27/24	#	+	+/-
31.6.2		++	/	+		+	/	/
31.6.4	/	/		/	1	_/	/	/
31.6.6	1	/		1	/	/	/	1
31.6.8	/	/	/	/	/	/	1	1

10

III. Choice of a specific area


2. Method

III. Choice of a specific area2. Summary


Analysis of the chosen zone

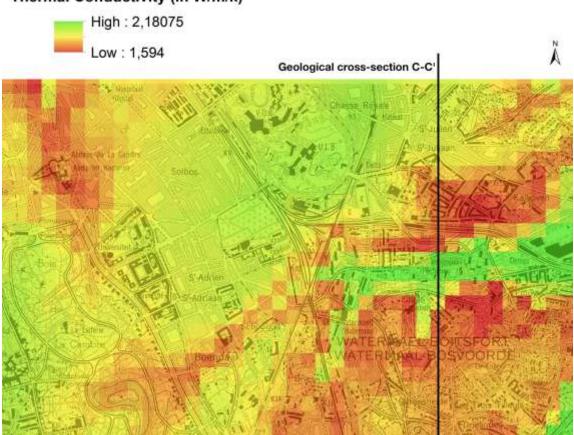
What prevents me from having a GSHP system in this area?

IV. Soil properties

BUFFEL, P. & J. MATTHIJS. (2001). Planche 31-39: Bruxelles - Nivelles. Carte Géologique de Belgique: Région de Bruxelles-Capitale.

IV. Soil properties

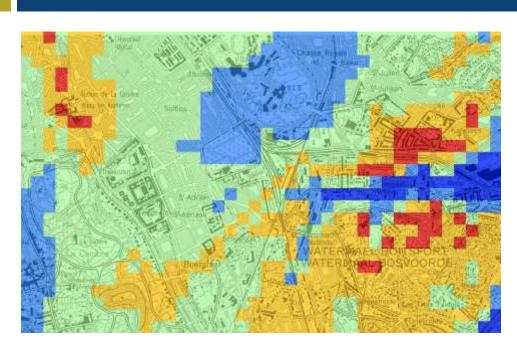
- Smart Geotherm: from Thermal Response Tests
- Tertiary:


Formation	$\begin{array}{c} {\rm Minimum~thermal} \\ {\rm conductivity~(in} \\ {\rm W/m/K)} \end{array}$	Average thermal conductivity (in $W/m/K$)
Maldegem	1.4	1.7
Lede	1.9	2.3
Bruxelles	1.9	2.3
Kortrijk	1.2	1.5
Hannut	1.2	1.5

- □ Bedrock: 4 W/m/K
- Quaternary

V. Detailed analysis1. Geothermal energy

Thermal Conductivity (in W/m/k)


$$\lambda = \frac{\sum \lambda_n t_n}{\sum t_n} ;$$

Thermal conductivity of a geothermal probe with a depth of 100m

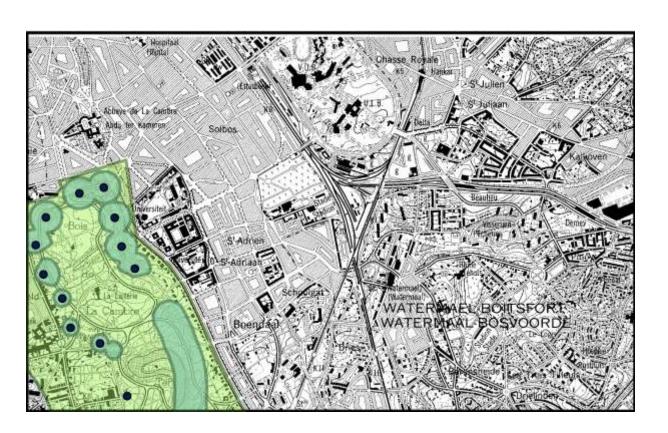
V. Detailed analysis

1. Geothermal energy

$$\eta=9.0375 \, \lambda_{av}+29.058 \, ;$$
 $\eta=rac{Q_{ground}}{L_{tot}} \, ;$ $Q_{out}=rac{COP}{COP-1} \, Q_{ground} \, ;$

Heat supplied (W/BHE/year):

Apartment with 3 living areas of 80 m² & Q_{out} = 6200 W/BHE/year:

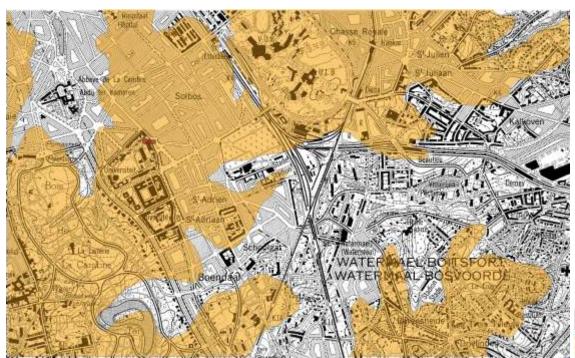

	Recent construction	House built up between 1975 & 1985	House built up before 1975
Required energy (W/m²/year)	50 to 70	100	120 to 150
Number of BHE	2 to 3	4	5 to 6

V. Detailed analysis

2. Brussels regulations

- Impossible to forecast a refusal
- Except: groundwater catchment zone

Legend



V. Detailed analysis3. Geotechnics

Galleries:

- □ Water & grouting flowing → danger
- NOT impossible!

Legend

Underground galleries

Areas which may contain underground quarries

V. Detailed analysis3. Geotechnics

Bedrock:

- □ Hard → Drilling difficulties
- NOT impossible!
- High price (>< High conductivity)
 - Equipment
 - Not enough knowledge

Thickness of the Tertiary (in m)

72,76999664 - 91,05635214

91,05635215 - 104,8373737

104,8373738 - 115,4381595

115,4381596 - 124,9788667

124,9788668 - 140,3500061

VI. Detailed analysis5. Attempt to study price

Assumptions:

Installation:

- Drilling:
 - 30 €/m in soft ground
 - 50 €/m in bedrock
- □ Probes: 10 €/m
- HP: 600 €/kW
- Bounty: 25 %

Dwelling (80 m²):

- Electricity: 0.17 €/kWh
- Gas: 0.08 €/kWh
- $Q_{out} = 8 \text{ kW/year}$

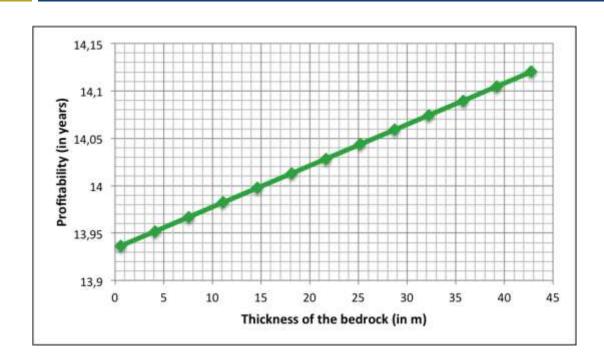
Equations:

Variation of L_{ter}

$$Q_{ground} = \frac{COP - 1}{COP} Q_{out};$$

$$\eta = rac{Q_{ground}}{L_{tot}}$$
;

$$L_{tot} = L_{bed} + L_{ter};$$


$$\eta = 9.0375 \, \lambda_{av} + 29.058$$
;

$$\lambda_{av} = \frac{\lambda_{ter} L_{ter} + \lambda_{bed} L_{bed}}{L_{tot}};$$

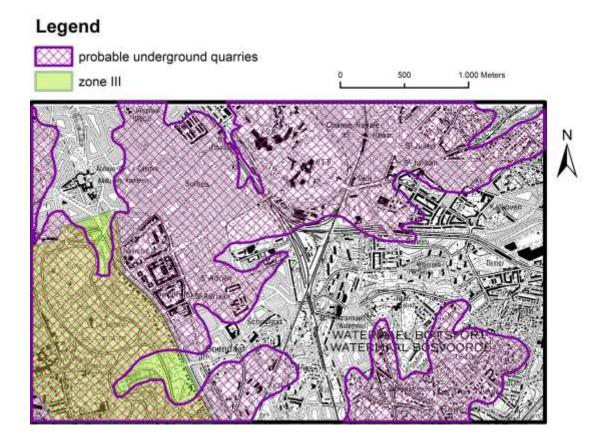
$$\lambda_{ter} = \frac{\lambda_{Mal} + \lambda_{Led} + \lambda_{Bxl} + \lambda_{Ko} + \lambda_{Hn}}{5};$$

VI. Detailed analysis5. Attempt to study price

- Hypothesis based on basic information
- Best solution:
 - Sharing
 - New construction

L _{ter} (m)	L _{tot} (m)	Price _{installation} (€)
130	130.57	10034.22
125	129.09	10045.24
120	127.60	10056.27
115	126.12	10067.29
110	124.64	10078.31
105	123.16	10089.33
100	121.67	10100.35
95	120.19	10111.38
90	118.71	10122.40
85	11 <i>7</i> .22	10133.42
80	115.74	10144.44
75	114.26	10155.46
70	112.77	10166.49

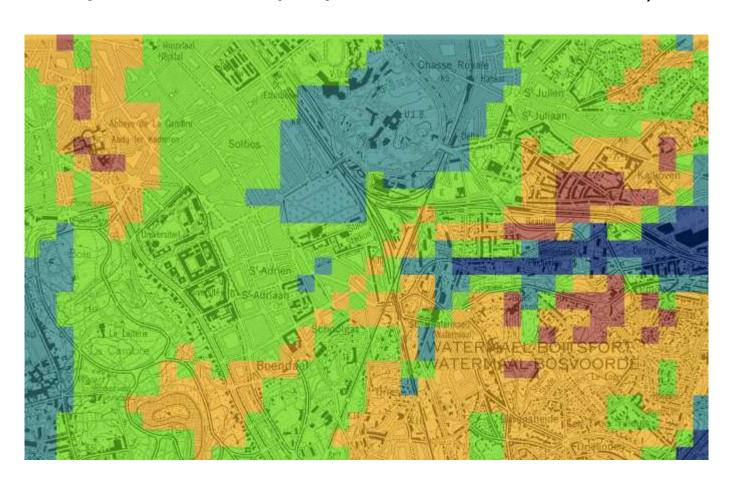
Conclusions


Conclusion of analysis? Long-term prospects?

VI. Conclusion

1. Reminder

- Categorical refusal: groundwater catchment
- Problem: galleries & bedrock (financing)



VI. Conclusion

1. Reminder

 \square Quite good thermal properties: 43.4 – 49.7 W/m

VI. Conclusion

2. Perspectives of the method

- Not a substitution for fieldwork!
- Maps decide if it is reasonable to make further investments
- Usable at larger scale?
 - Conceivable
 - Necessary to have access to data on the entire zone:
 - Reproduction of the underground
 - Banned drilling areas
 - Databases
 - Thermal conductivity
 - Drilling capacity

Thank you for your attention!