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Electrical resistivity tomography (ERT):

recent advances and new applications

Frédéric Nguyen, Guillaume Blanchy, David Caterina, Tom Debouny,
Hadrien Michel, and Yannick Forth

+ published work from Itzel Isunza Manrique and Gael Dumont,
(former PhD ULiege)
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# of documents published with ERT in engineering
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What is electrical resistivity tomography ?
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Why a Focus on electrical resistivity ?

« Flexible » set-up
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A brief and non-exhaustive ERT history

Torreberga main profile (8 -> E) 1993-12-61
VENNER ZD MODEL (r.m.s. residuals 6.32)

* 1990s : Automatic centralized
resistivity meters

* 2000s: Increased number of channels
»2000s: Electrode design

* 2010s: Integration with studied
processes

* 2010s Data processing : from
commercial to open-source suites

»2010s: Remote operation

»2010s : Decentralization through
autonomous GPS-PPS synchronized
electrical field recorders

»2020s: Machine learning and open
hardware
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Engineering geology :

Investigating deep structures for
the Einstein Telescope

How decentralized acquisition systems allows to image geology at great depth
(500m)

ETGEO team @ULiege



Pourquoi s’intéresser au sous-sol alors que
'on cherche a comprendre Uunivers lointain ?

La fusion d’objets massifs
(trous noirs) génere des
deformations de U'espace
créeant des déplacements de
108 m entre des objets situés
a 1 km de distance alors que
le sol vibre naturellement a
10°m

S’enterrer permet de
s’affranchir (en partie) des
vibrations anthropiques




’enjeu est de prévoir ces conditions pour
minimiser les risques/couts du géenie civil et de
s’assurer des exigences « vibratoires »

300m

Télescope Einstein



Imagerie geophysique

* « Tomographie électrique » a grande échelle
(7km de long, 500m prof.)

 Permet de compléter Uinformation entre les
forages et de faire ressortir les contrastes

o =

IRIS © fullwaver unité d’acquisition GPS-PPS
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Next steps in terms of the ERT imaging

* Interpretation in terms of structural information
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* Quantitative integration of geophysical logs from boreholes
* Integration with gravity, and seismic data
* Additionnal profiles in order to have 3D data sets
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Time-lapse monitoring for
environmental geotechnics

Automated remote control allows mapping preferential flowpath



Water recirculation in engineered landills
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Dumontet al., 2018
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0— Silt/Clay
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4 .-+ -{]V Drain (110 mm)
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e

Site 2 (drain section 1)

110 mm perforated tube,
4 m depth

50 m long
100—120 m? /h injection
Pump test: 120 m?

(late 6/2014)

Individual injection experiment:

60 (30/7/2014) and 275 m?
(11/8/2014)

Along injection drain
Four lines of 32 electrodes
(2.5 m spacing)

1152 data points

Hourly
(30/7/2014-19/8/2014)
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Water recirculation in engineered landills
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Mapping preferential infiltration flowpath

Dumontet al., 2018

_____imn

% Resistivity change: -80 -60 -40 -20
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Mapping preferential flowpath

* Low residence time of water in the landfill
* Optimize the injection frequency
* Strong flow anisotropy consistent with waste compaction

* Other potential applications: dams or embankments monitoring
for seepage

M. Tayyab, G. Morell and S. Kaha,
2017 (SAGEEP).
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Urban geophysics: machine
learning to mapping backfills

ltzel Isunza Manrique, Thomas Hermans, David Caterina, Damien Jougnot, Benoit
Mignon, Antoine Masse, Fréderic Nguyen, Integrated methodology to link geochemical
and geophysical-lab data in a geophysical investigation of a slag heap for resource
quantification, Journal of Environmental Management, Volume 349, 2024, 119366,

ISSN 0301-4797, https://doi.org/10.1016/j.jenvman.2023.119366.
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Methodology to integrate lab and field data

210 420
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1. Field measurements

4. Multivariate statistics
*Physics-based clustering using

2. Targeted sampling

lab data

o /s
ST JAE

= Site extension

- Blast furnaces
-Old factory
Coking plant

Black slag
Gas dust
=== Tailing
- Slag heap

5. Classification of field data

*Fit 2D KDE using collocated field data
*Compute joint conditional probabilities
*Interpretation field data - classification

*Granulometry
*Geochemical data

3

6. Estimation of volumes of each group
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Lab analysis yielded 4 groups

Group |Samples OL.b m,, Group Metallic
identifie (mS/m | (mV/V) composition concentration
r
)
Group 1 |S04_5,S05_3 <20 <20 Si-Ti-K Low
Group 2 |S02_3, S02_5, S06_1, > 20 > 100 Fe-Mn-V-Cr High
S06_3, S06_5
Group 3 |S01_1,S01_3, S01_5, >14 <90 Fe-Mn-V-Cr Low-
S03 1, S03_3, S03 5, > 20 intermediate
S04_1, S04_3, S07_1,
S07_3, S07_5,S08_5
Group4 |S02_1,S08_1,S08_3 <25 > 70 Fe-Mn-V-Cr Intermediate-
large

Groups supported using PCA & clustering (unsupervised learning)
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Classification of field data

250.

)62.9

Chorgecltgigfy (mV/V,

3.98

1.3% i i res'slf %W (Ohm'nz]?ze 3.00

1.00

20



Volume estimation

1.81 x10% m3

V,=

3.66 x103 m3

1:

\Y

1.653 x10° m3

The volumes of individual
cells in the mesh v were

weighted by

corresponding probability

values and added




Conclusions

« Methodology that links a physics-based clustering at lab scale to field data and can
be used to derive a quantitative interpretation of field data through a probabilistic

classification that integrates uncertainty.

 (Can be updated with additional data type



Geophysics in an open world

Work of G. Blanchy, H. Michel, D. Caterina and T. Debouny

Driving the survey cost down
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https://ohmpi.org
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Designing and testing electrode type

4 types of electrode:

Agar powder gel

= NaCl (2M) & KCI (2M)

» Prepared the day before

= 2% of the liquid mass of agar powder

Salty saturated sponge

» Porous media

= Saturated only once with salty water
with a NaCl concentration of 100 g/L

==mey  Salty Bentonite

' = Mix of 250 g of bentonite and salty
water with a NaCl concentration of 100
g/L
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Testing in real-world conditions (electrodes

27



Next steps

OhmPi-Watcher
* Deployment in field conditions for deep ERT survey

* Validation through parallel measurements using commercial
devices

* Open source publication for dissemination

Non-invasive electrodes

* Understanding monitoring behaviour (repeated injection)
* Design a towable system

* Demonstrate on additional cases

28



Take home message

* More flexible systems layout allows new applications (deeper,
more complex geometries)

* Cheaper systems (open hardware) and remote control should
make monitoring affordable e.g. to monitor water movement
(slope instabilities ...)

* Machine learning algorithm allows to integrate various data sets
and help the interpretation

* Open source software allows to tailor ERT to many applications

29



Prof. Frédéric Nguyen

7 postdocs: Guillaume Blanchy,
Hadrien Michel, Anne-Sophie
Mreyen, Satoshi lzumoto, Lin-
Lin, Neill Marshall, Foivos
Karakostas

Logisticien de recherche : Dr.
Eng. David Caterina

4 PhD: Tom Debouny, Yannick
Forth, Giorgia Stasi (GSB),
Russel Swift (BGS)

2 Master: Camille De Villers,
Clément De Laneve
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Research “philosophy”

* Methods

Observations are sparse and information
Is largely indirect and uncertain

* Applications

Looking and understanding new and best
suited proxies depending on the needs

e Users

Applied Geophysics: trying to make an
impact




Additional slides



Laboratory measurements

Geophysical data

ERT (p,,,), IP (m,,;,) and SIP
(0_1’ O_II, d):f)

*Measurements in 22
samples, columns of 1.5 dm?3

Geochemical data

XRF analysis for major elements
Average content > 1 wt. %: Si, Ca, Fe, Mn, Mg & Al
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Group |Samples OL.b m,, Group Metallic

identifie (mS/m | (mV/V) composition concentration
r
)

Group 1 |S04_5,S05_3 <20 <20 Si-Ti-K Low
Group 2 |S02_3, S02_5, S06_1, > 20 > 100 Fe-Mn-V-Cr High

S06_3, S06_5
Group 3 |S01_1,S01_3, S01_5, >14 <90 Fe-Mn-V-Cr Low-

S03 1, S03_3, S03 5, > 20 intermediate

S04_1,504_3, S07_1,
S07_3,S07_5,S08_5

Group4 |S02_1,S08_1,S08_3 <25 > 70 Fe-Mn-V-Cr Intermediate-
large

Groups supported using PCA & clustering (unsupervised learning)




Monitoring saline-freshwater interface
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1D electrical resistivity stick enable to follow the saline-freshwater interface in the Belgian
polders under different drainage regimes. We can observe that during summer, the freshwater
lens decreases and the saline water rises up, potentially endangering yield.
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ja varieties. Hermes and Pro_1 dries the soil earlier compared to

Lenka. Lenka will be more sensitive to later drought compared to Hermes and Pro_1.

Hermes and Pro 1 are so

Lenka,



Classification of field data

Compute joint conditional probabilities of

each group

- 2D Kernel Density Estimator (KDE)

— volume-averaged field data (p, m),

collocated with sampling
16m . &

3m

> froe() = Zjo K(y—xj;h) fora
Gaussian kernel K « exp(—x?2/2h?)
with a bandwidth /

»

2D KDE's visualization for a regular grid &
collocated field data
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Classification of field data

e Estimate 2D KDE’s at the resistivity and chargeability values of the whole inverted model, i.e.,
y=(P,M)

* Estimate P(A;|y) using Bayes’ Rule and P(4;) from sampling

* Comparing P(A;|y) and derive a classification model

Groups

25 > 1 . Probability values > 50 %
E ’ e 3 E
gL ¢ 4| E°
510 g
2 Q1.

0.5

0.0 1

T T T I T T T

2 3 4 1.0 1.5 210 2.5 3.0 38
log10p(Qm) log10p(Qm)



A
) Y

LIEGE

e

Le Télescope Einstein : une infrastructure
scientifique remarquable souterraine
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’Euregio Meuse Rhin comme site candidat

I Données limitées!
_ Les arguments geophysiques:
¥ °~Un niveau de vibration en profondeur

« protégé » par des couches
superficielles atténuantes

* Des conditions géotechniques a ce
stade favorables

Le sous-sol est étudié a travers:

* Forages (14)
* Successionverticale
* Echantillons
* Essais
* Pose d’instruments (bruit sismique)

* Géophysique
* Imagerie
* Exigences entermes de vibration

e Modeles
e Géniecivil
* Eau souterraine

Drilled, contains piezometer
Drilled, contains seismometer

Drilled, technical failure

Not yet drilled, will contain seismometer :

St-Pietersvoeren-1
X/

NRE A

Overview map

4-9-2024 15

PCS; ETRS 1

Not et drilled, will contain piezometer / ’

%
/

nermvertex
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Kubel-2

Aubel-3

urrent Time:
21

N_\ Spatial Reference
Name: ETRS 1989 LCC
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Netherlands

“NoHombourg

Wallonia

Herbestha} ‘ Einstein
LT Telescope




Pourquoi s’intéresser au sous-sol alors que
'on cherche a comprendre Uunivers lointain ?

v'S’enterrer permet de
s’affranchir (en partie) des
vibrations anthropiques
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Pourquoi s’intéresser au sous-sol alors que
'on cherche a comprendre Uunivers lointain ?

v'S’enterrer permet de 3
s’affranchir (en partie) des
vibrations anthropiques (>bruit
Newtonien)

»Augmenter le nombre de
détections par an

» Détections précoces

» Détections de trous noirs
massifs

> ...




Imagerie géophysique

* « Echographie sismique » du sol pour
'instant limitée en information

* Permet de compléter U'information entre
les forages et de faire ressortir les
contrastes mécaniques

Shallow Processing Flow : Pre-Stack Time Migration
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Correlation with geological maps
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Correlation with geological maps

Val-Dieu abbey
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Imagerie géophysique

* « Tomographie electrique » a grande échelle

* Permet de compléter Uinformation entre les forages et de
faire ressortir les contrastes




OhmPi: Open-Hardware resistivity-meter

https://ohmpi.org
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Ohmpl version mb.2024.0.2

Mono-channel
resistivitymeter.
Instructions and
assembling guidelines
can be found online.
With multiplexer (also
open-hardware), we
tested up to 128
electrodes but more can
be added.

Design for monitoring
applications
Open-source Python
code and Web interface
available to operate the
instruments.
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Aim: Estimate volume(s) of different types of
materials to assess potential resource recovery

Context: Idled factory of iron & steel production,

La Louviere, Belgium
Materials: slags from electric arc and ladle
refining furnaces + heterogeneous residues

diterreg M

North -West Europe
NW -':Jﬁpﬁ“” ERATIS

- Site extension
== Blast furnaces
Old factory

Coking plant

Black slag

Gas dust
=== Tailing

Slag heap
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