Water Weakening and Fluid Rock Interactions in Chalks from the Mons Basin

Christian David Davide Geremia

GEO²FRI²SK

GEOphysical and GEOtechnical impact

of Fluid-Rock Interactions

For RISK assessment in chalk formations

Reservoir applications

Geotechnical applications

Reservoir applications

Enhanced oil recovery operations

What is the impact of fluid substitution on the mechanical properties of a reservoir at depth?

Starting point of the project:

Design lab experiments mimicking oil-water substitution in reservoir rocks under stress

what happens in a reservoir at depth during the fluid substitution process ?

Oil-water substitution in reservoir rocks under stress

\rightarrow Lab experiments on the Sherwood sandstone (UK)

at very low injection pressure < 1 MPa

Oil-water substitution in reservoir rocks under stress

Water injection can result in mechanical instability which can be monitored through seismic survey

GEO²FRI²SK

GEOphysical and GEOtechnical impact

of Fluid-Rock Interactions

For RISK assessment in CHALK FORMATIONS Reservoir applications Geotechnical applications

29.03.2022

Water-weakening and Fluid-Rock Interactions in Chalks from the Mons Basin

Presented by: Davide Geremia

Supervisors: Christian David, Beatriz Menéndez and Christophe Barnes

Outline

- 1. Water-Weakening: Underground geological reservoirs secondary recovery of oil
- 2. Water-Weakening: Comparison in between Obourg and Ciply chalk
- 3. Theories of water-weakening
- 4. Application: Underground cavities stability in abandoned quarries

Secondary Recovery

Secondary Recovery

Secondary Recovery

Secondary Rrecovery

Ekofisk Oil Field, North Sea

Phase 3: Chemical weakening and deformation

Experimental Approach - Secondary Recovery

Experimental Approach – Conventional Triaxial Tests

RockEnGeo.be

Experimental Approach – Conventional Triaxial Tests

17

Materials

Composition: ~ 100% Calcite (Voake et

al., 2019)

Grain density: 2.72 g/cm³

Bulk Density: 1.55 g/cm³

Mean Porosity: 43%

Permeability: 0.2 – 6 mD

Peak pore throat Radius (Mercury

injection) = 0.3 µm

Peak grain size (statistical): $0.4 - 1.3 \ \mu m$

Obourg chalk

Ciply chalk

Composition: Calcite, Fluoroapatite Grain density: 2.73 g/cm³ Bulk density: 1.68 g/cm³ Mean Porosity: 39% Permeability: 40 mD

Materials

Obourg chalk

Ciply chalk

Geremia et al. 2021a Geremia et al. 2021b

Results - Triaxial Tests

RockEnGeo.be

Planning Injection Tests

Axial Strain (%)

Geremia et al. 2021a

Methods - Injection Tests Vacuum

The Ciply chalk is more sensitive to water

2nd Part Comparing the two Chalks

Comparison Obourg and Ciply Chalk

Modified after Geremia et al. 2021b

Comparison Obourg and Ciply Chalk

Brazilian test: - Tensile strength

Triple point load test:

- Fracture toughness K_{IC}
- Surface Energy

Geremia et al. 2021b

Through triaxial tests at low confining pressure:

- Cohesion
- Friction coefficient

Comparison Obourg and Ciply Chalk – Wet to Dry Ratios

Geremia et al. 2021b

3rd Part The Mechanisms of Water-Weakening

Short-Term Mechanisms

Repulsive Pressure

Surface Energy

Energy to cut a solid body in two parts

Røyne et al. 2011 through double torsion experiment

Surface Energy and P*

Carbonates

Sandstones

- Surface area
- Mineralogy

Surface Energy Estimation From Rachid Ismail's Internship

Surface Eenergy and Repulsive Pressure - AFM

Summary

CERGY PARIS UNIVERSITÉ

			Obourg Chal	k		Ciply Chalk		
→	Surface Energy (J/m ²)	Dry Rock	Water- Saturated Rock	$\lambda = \frac{\gamma^{(sat)}}{\gamma^{(dry)}}$	Dry Rock	Water- Saturated Rock	$\lambda = rac{\gamma^{(sat)}}{\gamma^{(dry)}}$	
→	From contact angle measurements	0.0234	not measurable	х	0.0253	not measurable	х	Owens-Wendt model
	From AFM	0.0207	0.0165	0.80	0.0196	0.0141	0.72	$\gamma = \frac{F_{adh}}{4\pi R}$
→	From K _{ic} measurements	0.5270	0.4150	0.79	1.01	0.84	0.83	$\longrightarrow \qquad \gamma = \frac{K_{IC}^2}{2E}$

RockEnGeo.be

$$P_{adh}^{(Dry,Wet)} = \frac{F_{adh}^{(Dry,Wet)}}{2\pi R^2}$$

Repulsive pressure = $P_{adh}^{(Dry)} - P_{adh}^{(Wet)}$

	Obourg Chalk	Ciply Chalk
Dry	5.06 MPa	4.79 MPa
Wet	0.99 MPa	0.84 MPa
Rep. Pressure	4.1 MPa	<u>3.9 MPa</u>

 $C_{Dry} - C_{Wet} = 0.8 MPa$

35

Surface Energy mechanism

Take home message:

• Results indicate that a hydration layer can decrease the surface energy, hence the energy to induce cracking

Repulsive Pressure mechanism

Geremia et al. 2021b

Take home message:

JNIVERSITÉ

- Results indicate that a hydration layer can also set up a repulsive pressure
- The presence of adsorbed ions dismantles the repulsive pressure

4th Part

Influence of Cyclic Imbibition of Water on the Mechanical Properties of Ciply Chalk

Ciclic Imbibition of Ciply Chalk – La Malogne Quarry

Georgieva et al. 2020

Ciclic Imbibition of Ciply Chalk – La Malogne Quarry

Experimental Approach – Imbibition/Drying Cycles

Ambient stress

Constant, not critical, axial load

Ciclic Imbibition of Ciply Chalk – Ambient Stress

- 15 cycles of imbibition-evaporation with distilled water
- Imbibition: between 30 and 60 mins
- Evaporation: three days
- UCS and Young's modulus at cycle 0, 2, 6, 10, 15
- 5 samples for Young's modulus (load/unload cycle)
- 5 samples for UCS
- Environmental conditions:

Temperature range: 23-25 °C

Humidity range: 46 – 64 %

Ciclic Imbibition of Ciply Chalk – Ambient Stress

Take home message:

- The mechanical behavior indicates heterogeneity in the rock samples
- UCS seems to be more affected by the porosity rather than cyclic imbibition UNIVERSITÉ RockEnGeo.be

Ciclic Imbibition of Ciply Chalk – Ambient Stress

Take home message:

JNIVERSITÉ

- Young's Modulus does not appear to be affected by cyclic imbibition
- Young's Modulus undergoes hardening

Ciclic Imbibition of Ciply Chalk – Constant Load

- Constant axial stress: 0.6 MPa
- 6 cycles of imbibition-evaporation with chemically equilibrated water
- Imbibition: around 60 mins
- Evaporation: two days

1° Imbibition – Constant Load

2° Imbibition – Constant Load

Take Home Message

Axial Strain (%)

1. Imbibition at ambient stress

Water saturation does not induce strain When dried, the rock strength is recovered

 Imbibition at constant not-critical load
Water saturation leads the rock sample from a dry state to a wet state producing irreversible strain
When drying, no strain is recovered
Hence, a new imbibition does not induce strain

3. Injection test at constant **critical** load

Being the constant applied stress much higher than its watersaturated strength, it fails catastrophically

- Knowing the stress state we can predict the resulting deformation/compaction
- Open question: What then causes higher damage in the transitional zone?
 Frost weathering?

General Conclusions

- Results indicate that a hydration layer can both decrease the surface energy and set up a repulsive pressure
- Changing the saturating fluid means changing completely the mechanical properties; the new properties can be quantified through conventional mechanical tests
- The mechanical strength reduces exponentially and progressively with the water saturation or wet volume

